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Abstract: Document image analysis is the field of converting paper documents into an editable electronic 

representation by performing optical character recognition (OCR). In recent years, there has been a tremendous amount 

of progress in the development of open source OCR systems. The tesseract-ocr engine, as was the HP Research 

Prototype in the UNLV Fourth Annual Test of OCR Accuracy, is described in a comprehensive overview. Emphasis is 

placed on aspects that are novel or at least unusual in an OCR engine, including in particular the line finding, 

features/classification methods, and the adaptive classifier. OCRopus is one of the leading open source document 

analysis systems using tesseract-ocr with a modular and pluggable architecture. Imagemagick is an open source image 

processing tool. This paper presents an overview of different steps involved in a document image analysis system and 
illustrates them with examples from Combination of imagemagick and OCRopus. 
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I. INTRODUCTION 

 

Paper documents like books, handwritten manuscripts, 

magazines, newspapers, etc. have traditionally been used 

as the main source for acquiring, disseminating, and 

preserving knowledge. The advent of personal computers 

has given birth to another class of documents called 

electronic documents. An electronic document is a 
representation of a document using data structures that can 

be understood by computers. Typical examples of 

electronic documents are PDF, Word, XML, E-mails, Web 

pages, etc. 

Electronic documents offer several advantages over tradi-

tional paper documents like easier editing, retrieval, index-

ing, and sharing since document contents can be accessed 

electronically. Therefore, most documents are created 

today by electronic means [1]. An electronic document can 

be converted into a paper document by means of a printing 

device. Converting a paper document into electronic form, 
on the other hand, needs a way to transform the document 

into data structures that can be understood by computers. 

A scanning device can be used to obtain a digital image of 

a paper document. The transformation of a scanned 

document image into a structured electronic representation 

is a complex artificial intelligence task and is the focus of 

research in the field of document analysis and recognition. 

A document imagemay contain different types of contents 

like text, graphics, half-tones, etc. The goal of Optical 

character recognition (OCR) is to extract text from a 

document image. This is achieved in three steps. The first 

step locates text-lines in the image and identifies their 
reading order. This step is called geometric layout 

analysis. In the second step, text-lines identified by the 

layout analysis step are fed to a character recognition 

engine which converts them into an appropriate format 

(ASCII, UTF-8, . . .). Finally, an appropriate language 

model is usually applied to correct for OCR errors. 

Owing to the central role of optical character recognition 

in digitizing paper documents, several commercial and  

 

 

open source systems are available for OCR. The most 

notable commercial systems are ABBYY FineReader [2] 

and Nuance Omnipage [3]. An overview of the leading 

open source OCR systems is given in Section II. 

Performing different steps of OCR using the OCRopus 

open source OCR system will be shown in Section III 
followed by a summary in Section IV. 

 

II. OPEN SOURCE OCR SYSTEM 

 

Efforts in developing an open source OCR system started 

in late 90’s. GOCR [4] was among the first open source 

character recognition engines. Other engines e.g. Clara 

OCR [5], and Ocrad [6] followed in the last decade. 

However, the performance and capabilities of these 

engines are very limited as compared to commercial OCR 

software. The launch of Google Print project (now called 
Google Book Search) stimulated a lot of interest in open 

source OCR systems. HP labs open-sourced their OCR 

engine called Tesseract in 2005. This followed by the 

development of a new high-performance OCR system at 

DFKI in 2007 based on funding from Google Inc. One 

year later, Cognitive Technologies released the kernal of 

its Cuneiform OCR system as opensource. These 

developments in the open source OCR systems over the 

last few years have made them competitive to commerical 

OCR systems and hence several research and commercial 

applications have started using them. A brief history of 

each of the three leading open source OCR systems is 
given in the following with a more detailed description of 

OCRopus OCR system.   

 

A. Tesseract-OCR 

Tesseract [7], [8] is an open source OCR engine that was 

developed at HP between 1985 and 1995. In 1995, it was 

one of the top three OCR engines at the OCR accuracy 

contest organized by University of Nevada in Las Vegas 
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(UNLV) [9]. Unfortunately, the project was not developed 

further and in 2005, HP released the code to UNLV’s 
Information Science Research Institute (ISRI), an 

academic center doing ongoing research into OCR, as 

open source for the benefit of the community. The code 

was then picked up by Google for further development and 

is still maintained and extended at Google. 

 

B. Cuneiform /Open OCR 

Cuneiform [10], developed by Cognitive Technologies in 

the 90’s was one of the first OCR packages to include 

adaptive character recognition. It remained a competitor of 

ABBYY FineReader, but finally lost its market share. 

After several years with no development, its OCR engine 
was released as open source in 2008 under the name of 

OpenOCR [11]. 

 

C. OCRopus 

OCRopus [12], [13] is a state-of-the-art document analysis 

and OCR system, featuring pluggable layout analysis, 

character recognition, statistical language modeling, and 

multilingual capabilities. The OCRopus engine is based on 

two research projects: a high-performance handwriting 

recognizer developed in the mid-90’s and deployed by the 

US Census bureau, and novel high-performance layout 
analysis methods. Among leading open source OCR 

systems, OCRopus is unique in the sense that its design 

and development was done from scratch focusing on a 

modular and pluggable architecture. Besides, the 

interfaces have been designed to be able to handle any 

script and language. Since we will be seeing examples of 

different document processing steps using OCRopus later 

in this paper, more detail about its architecture and 

interfaces is given here. 

 

1) Color Coded Segmentation Representation: The 

purpose of using color-coded segmentation representation 
[15] is not only to simplify the interface by avoiding to 

deal with complicated data structures representing 

boundaries of segmented regions, but also to give a pixel-

accurate representation of segmentation. The segmentation 

follows a particular color coding convention1 to represent 

different levels of segmentation results. For instance, for 

representing the physical layout of a text document, the 

red channel encodes the column number of the pixel, the 

green channel represents the paragraph number of the 

pixel counted within its column, and the blue channel 

represents the line number within its paragraph. Special 
R,G,B values are assigned to other page elements like 

half-tones, layout separators etc. An image schematic 

diagram of a document layout and structure analysis 

system. Figure 1. 

2) hOCR Output Format: The hOCR format [16] targets 

the major writing systems and languages of the world, and 

defines markup to represent different typographic and 

linguistic phenomena across a wide variety of languages 

and scripts. The format represents the output of OCR as an 

HTML document and therefore can represent these 

phenomena with already well-defined, widely understood 
markup. Additional tags are added to embed the OCR 

engine specific information into the HTML document. 

One of the key advantages of the hOCR format over other 

OCR formats is that it can reuse the expertise that has 
gone into the development of textual representations for 

HTML. Generally speaking, all common style-, font-, 

script-, language-, and typesetting-specific phenomena 

(hyphenation, spacing, ruby, kashida, etc.) are to be 

represented using their HTML or Unicode representations. 

 

 
Fig 1. Schematic diagram of a document layout and 

structure analysis system. 

 

III. IMAGE PRE PROCESSING 
 

The preprocessing stage in document understanding 

primarily involves the following processes: i) removal of 

noise and other artifacts that are introduced during the 

scanning phase and during the production of the 

document, ii) separation of background regions of the 

document from the foreground, and iii) correction of skew 

that is introduced in the document image during 

scanning/acquisition. We will look into each of these 

problems and present commonly used techniques in this 

section. Some of these preprocessing algorithms could 

also be implemented as part of other modules during 
layout and structure analysis. However, pre-processing 

algorithms that are more specific to other modules of 

document understanding, such as character recognition are 

not studied here. Such methods might include binarization 

of a gray-level image and scaling of characters to a 

standard size 

 

A. Binarization 

Is the process that converts a given input grayscale or 

color document image into a bi-level representation [17]. 

Since scanners produce a grayscale image by default, it is 
usually the first step in any document processing pipeline. 

Imagemagick tool perform this function in proposed 

model . 

 

B. Noise removal 

Noise Removal Noise is a common problem in most of the 

image understanding problems. These involve white noise 

that is introduced by interferences in the sensors and 

amplification circuits of the digitization mechanism 

(scanner, camera). The common sources of noise include 

white noise, salt and pepper noise, quantization artifacts, 
etc. These are well known noise sources that are 

compensated for by using imagmagick framework 
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C. Foreground Detection 

One of the important problems in document structure 
understanding is that of separating the foreground from the 

background image. The problem is relatively simple in 

case of many documents that have a white or plain 

background. Even in such documents, determining the 

exact pixels that belong to the foreground is a challenging 

problem due to sampling and quantization of slant edges 

and lines. 

 

 
Fig2. Proposed method for document image analysis 

 

D. Skew Correction 

Skew is introduced in a document image when a document 
is scanned or imaged at an angle with respect to the 

reference axes. The problem of skew correction plays an 

important role in the effectiveness of many document 

analysis algorithms, such as text line estimation, region 

boundary detection, etc. this problem deal with 

Imagemagick and output of imagemagick is a input of 

OCRopus as shown in the figure 2. 

 

IV. TEXT RECOGNITION USING OCROPUS 

 

A typical OCR system consists of three key components: 

1) Geometric layout analysis identifies the location of 
text-lines in the scanned documents.  

2) Text-line recognition classifies the characters in the 

text-lines into letters of a pre-defined alphabet.  

3) Language modeling attempts to correct text-line 

recognition output by using language specific information.  
 

A. Geometric Layout Analysis 

Geometric layout analysis of a document image typically 

involves different processes. The exact order in which 

these processes are applied varies from one algorithm to 

another. Also, some algorithms might skip one or more of 

these processes or apply them in a hybrid way. However, 

most of the layout analysis systems use these processes in 

some form. Therefore, a brief outline of these processes is 

given here. 
 

• Text/Image segmentation: Text/Image segmentation is 

a process take a input from imagemagick as shown in the 

figure 2 and process that classifies page regions into one 

of a set of predefined classes (e.g. text, image, graphics, . . 

. ) [21], [22]. Methods for separating text and non-text 
regions in an image implement the 

ITextImageClassification interface.  

 

• Layout Analysis: Layout Analysis is a process that 

idenitifies text-lines in a document image while respecting 

the columnar structure of the document and extracts them 

in an appropriate reading order [23], [24]. In OCRopus, 

layout analysis algorithms implement the ISegmentPage 

interface.  

Note that for each of the above mentioned steps, 

implementations of several state-of-the-art algorithms are 

available in OCRopus. Each method provides a 
constructor of the form make_...(). Hence replacing one 

component by another is simply achieved by calling the 

constructor of the new component. For instance, to use 

Sauvola [25], [26] binarization algorithm instead of Otsu, 

we just need to replace the make_BinarizeByOtsu() 

argument with make_BinarizeBySauvola() in Line 19 of 

Figure 4. Note that the interface class pointers are held in 

an autodel object, which is a smart pointer class that 

automatically deletes the objects its pointing to as soon as 

it goes out of scope.  

 
B. Text Line Reorganization 

Textline recognition is the process of classifying the 

characters in the text-line image obtained as a result of 

layout analysis. It proceeds into two steps. The first step is 

to segment the line image into isolated character images. 

In the second step, the isolated character images are fed to 

a trained classifier for recognition. The segmentation of a 

textline into characters is achieved by algorithms 

implementing ISegmentLine interface, whereas 

recognition of these components individually is performed 

by classes inheriting from ICharacterClassifier interface. 

However, this approach has certain limitations when 
applied to real world documents scanned under a wide 

variety of conditions. Due to scanning artifacts, characters 

might end up broken or merged with other characters. In 

such cases accurately spotting characters in a text-line is 

not possible. Secondly, when isolated characters are fed to 

the character classifier without the knowledge of their 

relative size w.r.t. other characters in the line and their 

vertical position w.r.t. the baseline; distinctions between 

many uppercase and lowercase letters are not possible (for 

instance “O” and “o”, “S” and “s”, “P” and “p” etc.). 

 
To handle these cases a more sophisticated text-line 

recognition technique is required. OCRopus provides a 

generic interface for text line recognition called 

IRecognizeLine. This interface provides support for 

storing segmentation hypothesis of a text-line. These 

segmenatation 

hypotheses are represented as a weighted finite state 

transducer (FST) in which different segmentation 

possibilities are encoded as different paths in the 

transducer. Such a graph is termed as “segmentation 

graph”. The segmentation graph is implemented as an 
instance of the IGenericFst interface. The classifier tries to 

recognize each of the segmentation hypotheses and 
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associates a cost with it. The most likely recognition result 

is then obtained by the lowest cost path through the 
segmentation graph.  

Although well-trained text-line recognizers tend to be very 

accurate in recognizing text, there are some ambiguities 

that cannot be resolved with high confidence without 

further linguistic analysis. One such example is the 

distinction between “l” (lower case letter L), “I” (upper 

case letter I), and “1” (digit). In some fonts like Sans Serif, 

upper case I and lower case L are represented with the 

same ligature making it impossible for the text-line 

recognizer to distinguish between the two. Therefore 

language modeling is used to post-process the output of 

text-line recognition. All documents have been processed 
with Tesseract (version 3.02), a state-of-the-art open 

source document image analysis system. Tesseract 

provides an API to analyse an image and access the 

results. Layout and text content were exported to the PDF, 

XML, HTML etc.original rectangular outlines as produced 

by Tesseract (Fig. 4) 

 

 C. Statistical Language Model 

The purpose of statistical language modeling is to provide 

linguistic information to the OCR system for better 

recognition results. The language model might consist of a 
simple dictionary based lookup. Alternatively, it may 

provide statistical information about the frequency of 

occurrence of different characters/words (uni-gram 

language model). A even more sophisticated language 

model might provide information about the frequency of 

occurrence of a sequence of letters/words (n-gram 

language model). All of these language models can also be 

conveniently represented as a weighted finite state 

transducer. Hence language models in OCRopus 

implement the IGenericFst interface. This representation 

has the advantage that applying a language model to the 

output of text-line recognition result (also an FST) is a 
simple “compose” operation of two FSTs. 

 

V. PERFORMANCE EVOLUTION 

 

OCRopus is an on-going, active open-source project and 

has just (October 2007) had its alpha release. OCRopus 

may already be useful in some applications: according to 

our benchmarks (Figure 3), it is currently the best 

available open source OCR system for English, when 

using the combination of imagemagick with the Tesseract 

text line recognizer. 
 

 
Figure 3. Evaluation of the OCR and layout analysis . 

 
Figure 4 Example result of layout analysis by Tesseract 

3.02. 

 

Performance of the OCRopus system on scanned pages. 

The performance measure is string edit distance with unit 

costs for single character errors and parameterized costs 

for block moves. Performance near the left end of the 

graph indicates character-level accuracy, while 
performance towards the right indicates layout analysis 

errors. The OCRopus version is from February 2007. 

Systems compared are the open source gOCR and OCRad 

systems, and the commercial Omnipage and Abbyy 

Finereader systems. Tesseract is evaluated once as a stand-

alone system, and once as a text line recognizer within the 

OCRopus system. 

 

Overall, our hope is that OCRopus will become a widely 

adopted standard for research in OCR, as well as the basis 

for many open source and commercial applications, in 

areas ranging from digital libraries to affordable reading 
machines for the visually impaired. Potential contributors 

can find out more about joining the project at 

www.ocropus.org; we are particularly interested in new 

text line recognizers for a variety of scripts and language 

modeling tools for different languages. The source code 

for the system can be downloaded at the same address. 

 

VI. CONCLUSION 

 

In this paper, we described the Document Image Analysis 

process step by step and Existing Open Source OCR 
Systems. Proposed new method implements the 

combination of Imagemagick (image preprocessing 

framework) and tessercat-ocr for better document layout 

analysis compared to existing tools. Apparently, 

approximate results can done by improved training tools, 

extensive testing and overall speed and error rate 

improvements, and the ability to create a usable version of 

OCRopus with no external library dependencies. 
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