
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3523 108

Document Image Analysis Using

Imagemagick and Tesseract-ocr

Prof. Smitha M L
1
, Dr. Antony P J

1
, Sachin D N

1

KVG College of Engineering, Sullia, D.K, Karnataka, India1

Abstract: Document image analysis is the field of converting paper documents into an editable electronic

representation by performing optical character recognition (OCR). In recent years, there has been a tremendous amount

of progress in the development of open source OCR systems. The tesseract-ocr engine, as was the HP Research

Prototype in the UNLV Fourth Annual Test of OCR Accuracy, is described in a comprehensive overview. Emphasis is

placed on aspects that are novel or at least unusual in an OCR engine, including in particular the line finding,

features/classification methods, and the adaptive classifier. OCRopus is one of the leading open source document

analysis systems using tesseract-ocr with a modular and pluggable architecture. Imagemagick is an open source image

processing tool. This paper presents an overview of different steps involved in a document image analysis system and
illustrates them with examples from Combination of imagemagick and OCRopus.

Keywords: Document Image Analysis, Imagemagick, tesseract-ocr, open source OCR, Free Software.

I. INTRODUCTION

Paper documents like books, handwritten manuscripts,

magazines, newspapers, etc. have traditionally been used

as the main source for acquiring, disseminating, and

preserving knowledge. The advent of personal computers

has given birth to another class of documents called

electronic documents. An electronic document is a
representation of a document using data structures that can

be understood by computers. Typical examples of

electronic documents are PDF, Word, XML, E-mails, Web

pages, etc.

Electronic documents offer several advantages over tradi-

tional paper documents like easier editing, retrieval, index-

ing, and sharing since document contents can be accessed

electronically. Therefore, most documents are created

today by electronic means [1]. An electronic document can

be converted into a paper document by means of a printing

device. Converting a paper document into electronic form,
on the other hand, needs a way to transform the document

into data structures that can be understood by computers.

A scanning device can be used to obtain a digital image of

a paper document. The transformation of a scanned

document image into a structured electronic representation

is a complex artificial intelligence task and is the focus of

research in the field of document analysis and recognition.

A document imagemay contain different types of contents

like text, graphics, half-tones, etc. The goal of Optical

character recognition (OCR) is to extract text from a

document image. This is achieved in three steps. The first

step locates text-lines in the image and identifies their
reading order. This step is called geometric layout

analysis. In the second step, text-lines identified by the

layout analysis step are fed to a character recognition

engine which converts them into an appropriate format

(ASCII, UTF-8, . . .). Finally, an appropriate language

model is usually applied to correct for OCR errors.

Owing to the central role of optical character recognition

in digitizing paper documents, several commercial and

open source systems are available for OCR. The most

notable commercial systems are ABBYY FineReader [2]

and Nuance Omnipage [3]. An overview of the leading

open source OCR systems is given in Section II.

Performing different steps of OCR using the OCRopus

open source OCR system will be shown in Section III
followed by a summary in Section IV.

II. OPEN SOURCE OCR SYSTEM

Efforts in developing an open source OCR system started

in late 90’s. GOCR [4] was among the first open source

character recognition engines. Other engines e.g. Clara

OCR [5], and Ocrad [6] followed in the last decade.

However, the performance and capabilities of these

engines are very limited as compared to commercial OCR

software. The launch of Google Print project (now called
Google Book Search) stimulated a lot of interest in open

source OCR systems. HP labs open-sourced their OCR

engine called Tesseract in 2005. This followed by the

development of a new high-performance OCR system at

DFKI in 2007 based on funding from Google Inc. One

year later, Cognitive Technologies released the kernal of

its Cuneiform OCR system as opensource. These

developments in the open source OCR systems over the

last few years have made them competitive to commerical

OCR systems and hence several research and commercial

applications have started using them. A brief history of

each of the three leading open source OCR systems is
given in the following with a more detailed description of

OCRopus OCR system.

A. Tesseract-OCR

Tesseract [7], [8] is an open source OCR engine that was

developed at HP between 1985 and 1995. In 1995, it was

one of the top three OCR engines at the OCR accuracy

contest organized by University of Nevada in Las Vegas

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3523 109

(UNLV) [9]. Unfortunately, the project was not developed

further and in 2005, HP released the code to UNLV’s
Information Science Research Institute (ISRI), an

academic center doing ongoing research into OCR, as

open source for the benefit of the community. The code

was then picked up by Google for further development and

is still maintained and extended at Google.

B. Cuneiform /Open OCR

Cuneiform [10], developed by Cognitive Technologies in

the 90’s was one of the first OCR packages to include

adaptive character recognition. It remained a competitor of

ABBYY FineReader, but finally lost its market share.

After several years with no development, its OCR engine
was released as open source in 2008 under the name of

OpenOCR [11].

C. OCRopus

OCRopus [12], [13] is a state-of-the-art document analysis

and OCR system, featuring pluggable layout analysis,

character recognition, statistical language modeling, and

multilingual capabilities. The OCRopus engine is based on

two research projects: a high-performance handwriting

recognizer developed in the mid-90’s and deployed by the

US Census bureau, and novel high-performance layout
analysis methods. Among leading open source OCR

systems, OCRopus is unique in the sense that its design

and development was done from scratch focusing on a

modular and pluggable architecture. Besides, the

interfaces have been designed to be able to handle any

script and language. Since we will be seeing examples of

different document processing steps using OCRopus later

in this paper, more detail about its architecture and

interfaces is given here.

1) Color Coded Segmentation Representation: The

purpose of using color-coded segmentation representation
[15] is not only to simplify the interface by avoiding to

deal with complicated data structures representing

boundaries of segmented regions, but also to give a pixel-

accurate representation of segmentation. The segmentation

follows a particular color coding convention1 to represent

different levels of segmentation results. For instance, for

representing the physical layout of a text document, the

red channel encodes the column number of the pixel, the

green channel represents the paragraph number of the

pixel counted within its column, and the blue channel

represents the line number within its paragraph. Special
R,G,B values are assigned to other page elements like

half-tones, layout separators etc. An image schematic

diagram of a document layout and structure analysis

system. Figure 1.

2) hOCR Output Format: The hOCR format [16] targets

the major writing systems and languages of the world, and

defines markup to represent different typographic and

linguistic phenomena across a wide variety of languages

and scripts. The format represents the output of OCR as an

HTML document and therefore can represent these

phenomena with already well-defined, widely understood
markup. Additional tags are added to embed the OCR

engine specific information into the HTML document.

One of the key advantages of the hOCR format over other

OCR formats is that it can reuse the expertise that has
gone into the development of textual representations for

HTML. Generally speaking, all common style-, font-,

script-, language-, and typesetting-specific phenomena

(hyphenation, spacing, ruby, kashida, etc.) are to be

represented using their HTML or Unicode representations.

Fig 1. Schematic diagram of a document layout and

structure analysis system.

III. IMAGE PRE PROCESSING

The preprocessing stage in document understanding

primarily involves the following processes: i) removal of

noise and other artifacts that are introduced during the

scanning phase and during the production of the

document, ii) separation of background regions of the

document from the foreground, and iii) correction of skew

that is introduced in the document image during

scanning/acquisition. We will look into each of these

problems and present commonly used techniques in this

section. Some of these preprocessing algorithms could

also be implemented as part of other modules during
layout and structure analysis. However, pre-processing

algorithms that are more specific to other modules of

document understanding, such as character recognition are

not studied here. Such methods might include binarization

of a gray-level image and scaling of characters to a

standard size

A. Binarization

Is the process that converts a given input grayscale or

color document image into a bi-level representation [17].

Since scanners produce a grayscale image by default, it is
usually the first step in any document processing pipeline.

Imagemagick tool perform this function in proposed

model .

B. Noise removal

Noise Removal Noise is a common problem in most of the

image understanding problems. These involve white noise

that is introduced by interferences in the sensors and

amplification circuits of the digitization mechanism

(scanner, camera). The common sources of noise include

white noise, salt and pepper noise, quantization artifacts,
etc. These are well known noise sources that are

compensated for by using imagmagick framework

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3523 110

C. Foreground Detection

One of the important problems in document structure
understanding is that of separating the foreground from the

background image. The problem is relatively simple in

case of many documents that have a white or plain

background. Even in such documents, determining the

exact pixels that belong to the foreground is a challenging

problem due to sampling and quantization of slant edges

and lines.

Fig2. Proposed method for document image analysis

D. Skew Correction

Skew is introduced in a document image when a document
is scanned or imaged at an angle with respect to the

reference axes. The problem of skew correction plays an

important role in the effectiveness of many document

analysis algorithms, such as text line estimation, region

boundary detection, etc. this problem deal with

Imagemagick and output of imagemagick is a input of

OCRopus as shown in the figure 2.

IV. TEXT RECOGNITION USING OCROPUS

A typical OCR system consists of three key components:

1) Geometric layout analysis identifies the location of
text-lines in the scanned documents.

2) Text-line recognition classifies the characters in the

text-lines into letters of a pre-defined alphabet.

3) Language modeling attempts to correct text-line

recognition output by using language specific information.

A. Geometric Layout Analysis

Geometric layout analysis of a document image typically

involves different processes. The exact order in which

these processes are applied varies from one algorithm to

another. Also, some algorithms might skip one or more of

these processes or apply them in a hybrid way. However,

most of the layout analysis systems use these processes in

some form. Therefore, a brief outline of these processes is

given here.

• Text/Image segmentation: Text/Image segmentation is

a process take a input from imagemagick as shown in the

figure 2 and process that classifies page regions into one

of a set of predefined classes (e.g. text, image, graphics, . .

.) [21], [22]. Methods for separating text and non-text
regions in an image implement the

ITextImageClassification interface.

• Layout Analysis: Layout Analysis is a process that

idenitifies text-lines in a document image while respecting

the columnar structure of the document and extracts them

in an appropriate reading order [23], [24]. In OCRopus,

layout analysis algorithms implement the ISegmentPage

interface.

Note that for each of the above mentioned steps,

implementations of several state-of-the-art algorithms are

available in OCRopus. Each method provides a
constructor of the form make_...(). Hence replacing one

component by another is simply achieved by calling the

constructor of the new component. For instance, to use

Sauvola [25], [26] binarization algorithm instead of Otsu,

we just need to replace the make_BinarizeByOtsu()

argument with make_BinarizeBySauvola() in Line 19 of

Figure 4. Note that the interface class pointers are held in

an autodel object, which is a smart pointer class that

automatically deletes the objects its pointing to as soon as

it goes out of scope.

B. Text Line Reorganization

Textline recognition is the process of classifying the

characters in the text-line image obtained as a result of

layout analysis. It proceeds into two steps. The first step is

to segment the line image into isolated character images.

In the second step, the isolated character images are fed to

a trained classifier for recognition. The segmentation of a

textline into characters is achieved by algorithms

implementing ISegmentLine interface, whereas

recognition of these components individually is performed

by classes inheriting from ICharacterClassifier interface.

However, this approach has certain limitations when
applied to real world documents scanned under a wide

variety of conditions. Due to scanning artifacts, characters

might end up broken or merged with other characters. In

such cases accurately spotting characters in a text-line is

not possible. Secondly, when isolated characters are fed to

the character classifier without the knowledge of their

relative size w.r.t. other characters in the line and their

vertical position w.r.t. the baseline; distinctions between

many uppercase and lowercase letters are not possible (for

instance “O” and “o”, “S” and “s”, “P” and “p” etc.).

To handle these cases a more sophisticated text-line

recognition technique is required. OCRopus provides a

generic interface for text line recognition called

IRecognizeLine. This interface provides support for

storing segmentation hypothesis of a text-line. These

segmenatation

hypotheses are represented as a weighted finite state

transducer (FST) in which different segmentation

possibilities are encoded as different paths in the

transducer. Such a graph is termed as “segmentation

graph”. The segmentation graph is implemented as an
instance of the IGenericFst interface. The classifier tries to

recognize each of the segmentation hypotheses and

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3523 111

associates a cost with it. The most likely recognition result

is then obtained by the lowest cost path through the
segmentation graph.

Although well-trained text-line recognizers tend to be very

accurate in recognizing text, there are some ambiguities

that cannot be resolved with high confidence without

further linguistic analysis. One such example is the

distinction between “l” (lower case letter L), “I” (upper

case letter I), and “1” (digit). In some fonts like Sans Serif,

upper case I and lower case L are represented with the

same ligature making it impossible for the text-line

recognizer to distinguish between the two. Therefore

language modeling is used to post-process the output of

text-line recognition. All documents have been processed
with Tesseract (version 3.02), a state-of-the-art open

source document image analysis system. Tesseract

provides an API to analyse an image and access the

results. Layout and text content were exported to the PDF,

XML, HTML etc.original rectangular outlines as produced

by Tesseract (Fig. 4)

 C. Statistical Language Model

The purpose of statistical language modeling is to provide

linguistic information to the OCR system for better

recognition results. The language model might consist of a
simple dictionary based lookup. Alternatively, it may

provide statistical information about the frequency of

occurrence of different characters/words (uni-gram

language model). A even more sophisticated language

model might provide information about the frequency of

occurrence of a sequence of letters/words (n-gram

language model). All of these language models can also be

conveniently represented as a weighted finite state

transducer. Hence language models in OCRopus

implement the IGenericFst interface. This representation

has the advantage that applying a language model to the

output of text-line recognition result (also an FST) is a
simple “compose” operation of two FSTs.

V. PERFORMANCE EVOLUTION

OCRopus is an on-going, active open-source project and

has just (October 2007) had its alpha release. OCRopus

may already be useful in some applications: according to

our benchmarks (Figure 3), it is currently the best

available open source OCR system for English, when

using the combination of imagemagick with the Tesseract

text line recognizer.

Figure 3. Evaluation of the OCR and layout analysis .

Figure 4 Example result of layout analysis by Tesseract

3.02.

Performance of the OCRopus system on scanned pages.

The performance measure is string edit distance with unit

costs for single character errors and parameterized costs

for block moves. Performance near the left end of the

graph indicates character-level accuracy, while
performance towards the right indicates layout analysis

errors. The OCRopus version is from February 2007.

Systems compared are the open source gOCR and OCRad

systems, and the commercial Omnipage and Abbyy

Finereader systems. Tesseract is evaluated once as a stand-

alone system, and once as a text line recognizer within the

OCRopus system.

Overall, our hope is that OCRopus will become a widely

adopted standard for research in OCR, as well as the basis

for many open source and commercial applications, in

areas ranging from digital libraries to affordable reading
machines for the visually impaired. Potential contributors

can find out more about joining the project at

www.ocropus.org; we are particularly interested in new

text line recognizers for a variety of scripts and language

modeling tools for different languages. The source code

for the system can be downloaded at the same address.

VI. CONCLUSION

In this paper, we described the Document Image Analysis

process step by step and Existing Open Source OCR
Systems. Proposed new method implements the

combination of Imagemagick (image preprocessing

framework) and tessercat-ocr for better document layout

analysis compared to existing tools. Apparently,

approximate results can done by improved training tools,

extensive testing and overall speed and error rate

improvements, and the ability to create a usable version of

OCRopus with no external library dependencies.

REFERENCES

[1] A. Holmes. Publishing trends and practices in the scientific commu-

nity. Canadian Journal of Communication, 29:359–368, 2004.

[2] http://finereader.abbyy.com/.

[3] http://www.nuance.com/imaging/products/omnipage.asp.

[4] http://jocr.sourceforge.net/.

[5] http://freshmeat.net/projects/claraocr/.

[6] http://www.gnu.org/software/ocrad/.

[7] R. Smith. An overview of the Tesseract OCR engine. In Proc. 9th

Int. Conf. on Document Analysis and Recognition, pages 629–633,

Curitiba, Brazil, Sep. 2007.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 5, May 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3523 112

[8] http://code.google.com/p/tesseract-ocr/.

[9] S. V. Rice, F. R. Jenkins, and T. A. Nartker. The fourth annual test

of OCR accuracy. Technical report, Information Science Research

Institute, University of Nevada, Las Vegas, 1995.

[10] http://www.cuneiform.ru/eng/.

[11] http://en.openocr.org/.

[12] T. M. Breuel. The OCRopus open source OCR system. In Proc.

SPIE Document Recognition and Retrieval XV, pages 0F1–0F15,

San Jose, CA, USA, Jan. 2008.

[13] http://code.google.com/p/ocropus/.

[14] http://code.google.com/p/iulib/.

[15] F. Shafait, D. Keysers, and T. M. Breuel. Pixel-accurate

representation and evaluation of page segmentation in document

images. In 18th Int. Conf. on Pattern Recognition, pages 872–875,

Hong Kong, China, Aug. 2006.

[16] T. M. Breuel. The hOCR microformat for OCR workflow and

results. In Proc. Int. Conf. on Document Analysis and Recognition,

pages 1063– 1067, Curitiba, Brazil, Sep. 2007.

[17] M. Sezgin and B. Sankur. Survey over image thresholding

techniques and quantitative performance evaluation. Journal of

Electronic Imag-ing, 13(1):146–165, 2004.

[18] N. Otsu. A threshold selection method from gray-level histograms.

IEEE Trans. Systems, Man, and Cybernetics, 9(1):62–66, 1979.

[19] F. Shafait, J. van Beusekom, D. Keysers, and T. M. Breuel.

Document cleanup using page frame detection. Int. Jour. on

Document Analysis and Recognition, 11(2):81–96, 2008.

[20] D. S. Bloomberg, G. E. Kopec, and L. Dasari. Measuring document

image skew and orientation. In Proc. SPIE Document Recognition

II, pages 302–316, San Jose, CA, USA, Feb. 1995.

[21] Y. Wang, I. Phillips, and R. Haralick. Document zone content

classification and its performance evaluation. Pattern Recognition,

39(1):57–73, 2006.

[22] D. Keysers, F. Shafait, and T. M. Breuel. Document image zone

classification - a simple high-performance approach. In 2nd Int.

Conf. on Computer Vision Theory and Applications, pages 44–51,

Barcelona, Spain, Mar. 2007.

[23] T. M. Breuel. Two geometric algorithms for layout analysis. In

Proc. Document Analysis Systems, volume 2423 of Lecture Notes

in Computer Science, pages 188–199, Princeton, NY, USA, Aug.

2002.

[24] F. Shafait, D. Keysers, and T. M. Breuel. Performance evaluation

and benchmarking of six page segmentation algorithms. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 30(6):941–

954, 2008.

[25] J. Sauvola and M. Pietikainen. Adaptive document image

binarization. Pattern Recognition, 33(2):225–236, 2000.

[26] F. Shafait, D. Keysers, and T.M. Breuel. Efficient implementation

of local adaptive thresholding techniques using integral images.

Proc, of SPIE Electronic Imaging: Document Recognition and

Retrieval, 6815:81510–81510, 2008.

